Wednesday, December 31, 2025

Amazon Rekognition

Excellent — let’s go deep into Amazon Rekognition, one of AWS’s most powerful AI-based computer vision services.

It’s designed to analyze images and videos using pretrained deep learning models, and it provides multiple specialized capabilities.

Here’s a detailed breakdown of the features you mentioned:


🧠 Amazon Rekognition — Overview

Amazon Rekognition is a fully managed computer vision service that can:

Detect objects, people, text, scenes, and activities

Recognize faces, emotions, and celebrities

Moderate inappropriate or unsafe content

Detect PPE (Personal Protective Equipment)

Work with both images and live/streaming video (via Kinesis Video Streams)


1️⃣ Content Moderation

🎯 Purpose:

Automatically detect inappropriate, unsafe, or offensive content in images or videos — for example:

Nudity or suggestive content

Violence or weapons

Drugs, alcohol, or tobacco

Explicit or visually disturbing scenes

⚙️ API:

DetectModerationLabels

🧩 What it returns:

A list of moderation labels with:

Name → e.g., “Explicit Nudity”, “Weapon Violence”, “Drugs”

Confidence → probability score (0–100%)

ParentName → broader category (e.g., “Violence”)

πŸ“˜ Example Output:

{

  "ModerationLabels": [

    {

      "Name": "Explicit Nudity",

      "ParentName": "Adult Content",

      "Confidence": 97.5

    }

  ]

}

🚦 Use Cases:

Social media photo uploads (auto-flag inappropriate content)

E-commerce product images

Parental control filters

Online education & news media moderation


2️⃣ Text Detection

🎯 Purpose:

Extract printed or handwritten text from images (photos, scanned docs, screenshots, etc.).

⚙️ API:

DetectText

🧩 Output Structure:

Each detected text element includes:

DetectedText → actual string (e.g., “SALE 50% OFF”)

Type → “LINE” or “WORD”

Confidence → accuracy score

Geometry → bounding box (position coordinates)

πŸ“˜ Example Output:

{

  "TextDetections": [

    {

      "DetectedText": "CAUTION",

      "Type": "WORD",

      "Confidence": 99.3,

      "Geometry": { "BoundingBox": { "Width": 0.15, "Height": 0.05, "Left": 0.1, "Top": 0.2 } }

    }

  ]

}

🚦 Use Cases:

OCR for invoices, signboards, or license plates

Text extraction in surveillance (e.g., reading warning signs)

Compliance verification (detect banned text/logos in user uploads)


3️⃣ Face Detection & Recognition

🎯 Purpose:

Detect and analyze human faces in images/videos. Rekognition can:

Detect face locations

Identify unique faces

Compare faces across images

Recognize known people from a collection

Analyze facial attributes (age, emotions, gender, etc.)

⚙️ APIs:

DetectFaces — detect and analyze faces

IndexFaces — store faces into a Face Collection

SearchFacesByImage — find matches for a new face

CompareFaces — one-to-one match

🧩 Attributes Returned:

Each detected face includes:

BoundingBox

Confidence

Emotions (HAPPY, SAD, ANGRY, CALM, etc.)

Gender, AgeRange

Pose (head tilt)

Smile (true/false)

Landmarks (eyes, nose, mouth coordinates)

πŸ“˜ Example Output:

{

  "FaceDetails": [

    {

      "AgeRange": { "Low": 25, "High": 35 },

      "Gender": { "Value": "Male", "Confidence": 98.7 },

      "Emotions": [{ "Type": "HAPPY", "Confidence": 92.3 }],

      "Smile": { "Value": true, "Confidence": 95.1 }

    }

  ]

}

🚦 Use Cases:

Attendance systems (face match with collection)

Smart door access

Retail analytics (emotion or age-based insights)

Photo tagging & duplicate detection


4️⃣ Celebrity Recognition

🎯 Purpose:

Recognize famous people in photos or videos — actors, politicians, athletes, etc.

⚙️ APIs:

RecognizeCelebrities — for images

GetCelebrityRecognition — for videos

🧩 Output:

Name → Celebrity name

Id → AWS celebrity ID

URLs → Wikipedia or IMDb links

Confidence → Match probability

πŸ“˜ Example Output:

{

  "CelebrityFaces": [

    {

      "Name": "Emma Watson",

      "MatchConfidence": 99.2,

      "Urls": ["https://www.imdb.com/name/nm0914612/"]

    }

  ]

}

🚦 Use Cases:

Media tagging for news and entertainment

Video indexing and metadata creation

Celebrity verification in influencer content


5️⃣ PPE Detection (Personal Protective Equipment)

🎯 Purpose:

Detect safety compliance in workplace images — identifying if people are wearing:

Helmets / hardhats

Face covers (masks)

Safety vests

⚙️ API:

DetectProtectiveEquipment

🧩 Output Includes:

Persons → list of people detected

For each person:

Bounding box

PPE items detected (FaceCover, HeadCover, HandCover, etc.)

Confidence for each

Whether the PPE covers the relevant body part (e.g., “mask covering nose & mouth”)

πŸ“˜ Example Output:

{

  "Persons": [

    {

      "Id": 1,

      "BodyParts": [

        {

          "Name": "FACE",

          "EquipmentDetections": [

            { "Type": "FACE_COVER", "CoversBodyPart": true, "Confidence": 96.8 }

          ]

        }

      ]

    }

  ]

}

🚦 Use Cases:

Construction or factory compliance monitoring

Real-time workplace safety systems

Health safety compliance (mask detection during COVID)

Security analytics dashboards


⚙️ Integration Flow (Typical Pattern)

1 Store images in Amazon S3

2 Call Rekognition API from:

AWS SDK (Python boto3, Node.js, etc.)

AWS Lambda for event-driven analysis

3 Get JSON results

4 Post-process or visualize (e.g., highlight boxes on image)

Example (Python boto3):

import boto3


client = boto3.client('rekognition')


response = client.detect_faces(

    Image={'S3Object': {'Bucket': 'mybucket', 'Name': 'photo.jpg'}},

    Attributes=['ALL']

)


for face in response['FaceDetails']:

    print(face['Emotions'], face['AgeRange'])


πŸ”’ Data Privacy and Security

All images processed through AWS-managed models; data isn’t stored permanently unless you choose to.

Face Collections are stored in your account (you control access).

Fully IAM-integrated (fine-grained permissions).

Supports encryption (KMS) for stored results.


πŸ’° Pricing (Approximate)

Feature

Pricing Basis

Example

Face / Object / Text Detection

per image

$1 per 1,000 images

Content Moderation

per image

$1 per 1,000 images

Celebrity Recognition

per image

$1 per 1,000 images

PPE Detection

per image

$0.10 per 1,000 images

Video Analysis

per minute

~$0.10–$0.12 per minute

(Actual pricing: AWS Rekognition Pricing Page)


🧾 Summary Table

Capability

API

Key Output

Common Use Case

Content Moderation

DetectModerationLabels

Unsafe content labels

Social media moderation

Text Detection

DetectText

Extracted text + geometry

OCR, signage detection

Face Recognition

DetectFaces, SearchFacesByImage

Age, emotion, gender, identity

Authentication, tagging

Celebrity Recognition

RecognizeCelebrities

Name + confidence

Media tagging

PPE Detection

DetectProtectiveEquipment

Mask/Helmet/Vest presence

Workplace safety


If you’d like, I can show you a sample Python script using boto3 that calls all these Rekognition APIs (moderation, face, text, celebrity, and PPE) and prints a structured report — would you like that?


No comments:

Post a Comment