Sunday, December 7, 2025

Semantic Search Options in AWS

 Excellent question! **Semantic search** goes beyond keyword matching to understand the *meaning* and *context* of queries. Here's how to enable semantic search across each AWS database service:


## **Two Main Approaches for Semantic Search**


1. **Vector Search**: Converting text/images into embeddings (vectors) and searching by similarity

2. **LLM-Enhanced Search**: Using Large Language Models to understand query intent


---


## **How to Enable Semantic Search on Each Service**


### **1. Amazon OpenSearch Service / OpenSearch Serverless**

**Native Support:** ✅ **Best suited for semantic search**

- **OpenSearch Neural Search Plugin** (built-in):

  - Supports vector search using ML models (BERT, sentence-transformers)

  - Can generate embeddings or ingest pre-computed embeddings

  - `k-NN` (k-nearest neighbors) index for similarity search

- **Implementation:**

  ```json

  // 1. Create index with vector field

  {

    "settings": {"index.knn": true},

    "mappings": {

      "properties": {

        "embedding": {

          "type": "knn_vector",

          "dimension": 768

        },

        "text": {"type": "text"}

      }

    }

  }

  

  // 2. Query using semantic similarity

  {

    "query": {

      "knn": {

        "embedding": {

          "vector": [0.1, 0.2, ...],  // Query embedding

          "k": 10

        }

      }

    }

  }

  ```

- **Use Cases:** Hybrid search (combining keyword + semantic), RAG (Retrieval-Augmented Generation)


### **2. Amazon Aurora PostgreSQL**

**Native Support:** ✅ **via pgvector extension**

- **pgvector extension** adds vector similarity search capabilities:

  ```sql

  -- Enable extension

  CREATE EXTENSION vector;

  

  -- Create table with vector column

  CREATE TABLE documents (

    id SERIAL PRIMARY KEY,

    content TEXT,

    embedding vector(1536)  -- OpenAI embeddings dimension

  );

  

  -- Create index for fast similarity search

  CREATE INDEX ON documents USING ivfflat (embedding vector_cosine_ops);

  

  -- Semantic search query

  SELECT content, embedding <=> '[0.1, 0.2, ...]' as similarity

  FROM documents

  ORDER BY similarity

  LIMIT 10;

  ```

- **Integration:** Use AWS Lambda + Amazon Bedrock/SageMaker to generate embeddings

- **Best for:** Applications already on PostgreSQL needing semantic capabilities


### **3. Amazon RDS for PostgreSQL**

**Native Support:** ✅ **Same as Aurora PostgreSQL**

- Also supports `pgvector` extension (PostgreSQL 11+)

- Similar implementation to Aurora

- **Limitation:** May have slightly lower performance than Aurora for large-scale vector operations


### **4. Amazon DynamoDB**

**No Native Support:** ❌ But can be enabled via:

- **DynamoDB + OpenSearch/Elasticache** pattern:

  1. Store metadata in DynamoDB

  2. Store vectors in OpenSearch/Amazon MemoryDB (Redis with RedisVL)

  3. Use DynamoDB Streams to keep them in sync

- **DynamoDB + S3** pattern:

  1. Store vectors as Parquet files in S3

  2. Use Athena/Pandas for similarity search

  3. Store metadata in DynamoDB

- **Bedrock Knowledge Bases** (newest approach):

  - AWS-managed RAG solution

  - Automatically chunks documents, generates embeddings, stores in vector database

  - Can use OpenSearch as vector store with DynamoDB as metadata store


### **5. Amazon DocumentDB**

**Limited Native Support:** ⚠️ **Workaround needed**

- No native vector data type

- **Solutions:**

  1. **Store embeddings as arrays**: `"embedding": [0.1, 0.2, ...]`

  2. **Use cosine similarity in application code** (not efficient at scale)

  3. **Hybrid approach**: Store in DocumentDB, index vectors in OpenSearch

- Not recommended for production semantic search at scale


### **6. Amazon MemoryDB for Redis**

**Native Support:** ✅ **via RedisVL (Redis Vector Library)**

- **Redis Stack** includes RediSearch with vector search:

  ```bash

  # Create index with vector field

  FT.CREATE doc_idx 

    ON HASH 

    PREFIX 1 doc:

    SCHEMA 

      content TEXT 

      embedding VECTOR 

        FLAT 6 

        TYPE FLOAT32 

        DIM 768 

        DISTANCE_METRIC COSINE

  

  # Search similar vectors

  FT.SEARCH doc_idx 

    "(*)=>[KNN 10 @embedding $query_vector]" 

    PARAMS 2 query_vector "<binary_vector>" 

    DIALECT 2

  ```

- **Advantage:** Ultra-low latency (millisecond search)

- **Best for:** Real-time semantic search, caching vector results


### **7. Amazon Neptune**

**Limited Support:** ⚠️ **Graph-enhanced semantic search**

- Not designed for vector similarity search

- **Alternative approach:** Graph-augmented semantic search

  1. Use OpenSearch for vector search

  2. Use Neptune to navigate relationships in results

  3. Example: Find semantically similar documents, then find related entities in graph

- **Use Case:** Knowledge graphs with semantic understanding


---


## **AWS-Managed Semantic Search Solutions**


### **Option 1: Amazon Bedrock Knowledge Bases**

**Fully managed RAG solution:**

1. Upload documents to S3

2. Bedrock automatically:

   - Chunks documents

   - Generates embeddings (using Titan or Cohere)

   - Stores vectors in supported vector database

3. Query via Retrieve API

4. **Supported vector stores:** Aurora PostgreSQL, OpenSearch, Pinecone


### **Option 2: Amazon Kendra**

**Enterprise semantic search service:**

- Pre-trained models for understanding natural language

- Connectors for various data sources

- No need to manage embeddings/models

- More expensive but requires zero ML expertise


### **Option 3: Custom Architecture with SageMaker**

```

Data Sources → SageMaker (Embedding Model) → Vector Store → Query Service

      ↓               ↓                         ↓            ↓

   DynamoDB     Lambda Functions          OpenSearch    API Gateway

 (Metadata)    (Orchestration)           (Vectors)     (Client)

```


---


## **Recommendations by Use Case**


| Use Case | Recommended AWS Stack |

|----------|----------------------|

| **Starting fresh** | **OpenSearch Service** (neural plugin) or **Bedrock Knowledge Bases** |

| **Already on PostgreSQL** | **Aurora PostgreSQL** with pgvector |

| **Real-time/low-latency** | **MemoryDB for Redis** (RedisVL) |

| **Enterprise/zero-ML** | **Amazon Kendra** |

| **Serverless RAG** | **Bedrock Knowledge Bases** + **DynamoDB** |

| **High-scale hybrid search** | **OpenSearch** (combines BM25 + vector search) |


## **Quick Start Path**

For most applications starting semantic search on AWS:


1. **For simplicity**: Use **Amazon Bedrock Knowledge Bases**

2. **For control/flexibility**: Use **OpenSearch Service with neural plugin**

3. **For existing PostgreSQL apps**: Add **pgvector to Aurora PostgreSQL**

4. **For real-time needs**: Use **MemoryDB for Redis with RedisVL**


The key is generating quality embeddings. AWS offers:

- **Amazon Titan Embeddings** (via Bedrock)

- **SageMaker JumpStart** (pre-trained models)

- **SageMaker Training** (custom models)

No comments:

Post a Comment