pip install --upgrade "mlflow[databricks]>=3.1"
Step 2: Create an MLflow Experiment
Open your Databricks workspace
Go to Experiments in the left sidebar under Machine Learning
At the top of the Experiments page, click on New Experiment
Step 3: Configure Authentication
Choose one of the following authentication methods:
Option A: Environment Variables
In your MLflow Experiment, click Generate API Key
Copy and run the generated code in your terminal:
bash
export DATABRICKS_TOKEN=<databricks-personal-access-token>
export DATABRICKS_HOST=https://<workspace-name>.cloud.databricks.com
export MLFLOW_TRACKING_URI=databricks
export MLFLOW_EXPERIMENT_ID=<experiment-id>
Option B: .env File
In your MLflow Experiment, click Generate API Key
Copy the generated code to a .env file in your project root:
bash
DATABRICKS_TOKEN=<databricks-personal-access-token>
DATABRICKS_HOST=https://<workspace-name>.cloud.databricks.com
MLFLOW_TRACKING_URI=databricks
MLFLOW_EXPERIMENT_ID=<experiment-id>
Install the python-dotenv package:
bash
pip install python-dotenv
Load environment variables in your code:
python
# At the beginning of your Python script
from dotenv import load_dotenv
# Load environment variables from .env file
load_dotenv()
Step 4: Verify Your Connection
Create a test file and run this code to verify your connection:
python
import mlflow
# Test logging to verify connection
print(f"MLflow Tracking URI: {mlflow.get_tracking_uri()}")
with mlflow.start_run():
print("✓ Successfully connected to MLflow!")
No comments:
Post a Comment