#Initializing the neural network
model = Sequential()
model.add(Dense(1,input_dim=x_train.shape[1]))
model.summary()
optimizer = keras.optimizers.SGD() # defining SGD as the optimizer to be used
model.compile(loss="mean_squared_error", optimizer=optimizer, metrics=metrics,run_eagerly=True)
epochs = 10
batch_size = x_train.shape[0]
start = time.time()
history = model.fit(x_train, y_train, validation_data=(x_val,y_val) , batch_size=batch_size, epochs=epochs)
end=time.time()
plot(history,'loss')
plot(history,'r2_score')
results.loc[0]=['-','-','-',epochs,batch_size,'GD',(end-start),history.history["loss"][-1],history.history["val_loss"][-1],history.history["r2_score"][-1],history.history["val_r2_score"][-1]]
No comments:
Post a Comment