#below gives values counts on the name column. If there are many empties in the column, then it gives that count
print(data['name'].value_counts())
Below are some variants.
data['marks'].value_counts(ascending=False)
data['age'].describe()
Group by gives values in a column group by
data.groupby('subjects').size()
Group by count works like this below
print(data.groupby('name').count())
If we want to put into Bins
data['age'].value_counts(bins=6)
references:
No comments:
Post a Comment