Thursday, February 3, 2022

What is BERT

BERT (Bidirectional Encoder Representations from Transformers) is a recent paper published by researchers at Google AI Language. It has caused a stir in the Machine Learning community by presenting state-of-the-art results in a wide variety of NLP tasks, including Question Answering (SQuAD v1.1), Natural Language Inference (MNLI), and others.

BERT’s key technical innovation is applying the bidirectional training of Transformer, a popular attention model, to language modelling. This is in contrast to previous efforts which looked at a text sequence either from left to right or combined left-to-right and right-to-left training. The paper’s results show that a language model which is bidirectionally trained can have a deeper sense of language context and flow than single-direction language models. In the paper, the researchers detail a novel technique named Masked LM (MLM) which allows bidirectional training in models in which it was previously impossible.

References:

https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270

No comments:

Post a Comment