What is a fragment shader?
Shaders are also a set of instructions, but the instructions are executed all at once for every single pixel on the screen. That means the code you write has to behave differently depending on the position of the pixel on the screen. Like a type press, your program will work as a function that receives a position and returns a color, and when it's compiled it will run extraordinarily fast.
Why are shaders fast?
Imagine the CPU of your computer as a big industrial pipe, and every task as something that passes through it - like a factory line. Some tasks are bigger than others, which means they require more time and energy to deal with. We say they require more processing power. Because of the architecture of computers the jobs are forced to run in a series; each job has to be finished one at a time. Modern computers usually have groups of four processors that work like these pipes, completing tasks one after another to keep things running smoothly. Each pipe is also known as a thread.
Video games and other graphic applications require a lot more processing power than other programs. Because of their graphic content they have to do huge numbers of pixel-by-pixel operations. Every single pixel on the screen needs to be computed, and in 3D games geometries and perspectives need to be calculated as well.
Let's go back to our metaphor of the pipes and tasks. Each pixel on the screen represents a simple small task. Individually each pixel task isn't an issue for the CPU, but (and here is the problem) the tiny task has to be done to each pixel on the screen! That means in an old 800x600 screen, 480,000 pixels have to processed per frame which means 14,400,000 calculations per second! Yes! That’s a problem big enough to overload a microprocessor. In a modern 2880x1800 retina display running at 60 frames per second that calculation adds up to 311,040,000 calculations per second. How do graphics engineers solve this problem?
This is when parallel processing becomes a good solution. Instead of having a couple of big and powerful microprocessors, or pipes, it is smarter to have lots of tiny microprocessors running in parallel at the same time. That’s what a Graphic Processor Unit (GPU) is.
Picture the tiny microprocessors as a table of pipes, and the data of each pixel as a ping pong ball. 14,400,000 ping pong balls a second can obstruct almost any pipe. But a table of 800x600 tiny pipes receiving 30 waves of 480,000 pixels a second can be handled smoothly. This works the same at higher resolutions - the more parallel hardware you have, the bigger the stream it can manage.
Another “super power” of the GPU is special math functions accelerated via hardware, so complicated math operations are resolved directly by the microchips instead of by software. That means extra fast trigonometrical and matrix operations - as fast as electricity can go.
References:
https://thebookofshaders.com/01/
No comments:
Post a Comment